Machine learning for the diagnosis of Parkinson’s disease using speech analysis: a systematic review | International Journal of Speech Technology


This systematic review examines the use of machine learning and speech analysis for diagnosing Parkinson's disease, compiling various studies using different machine learning techniques and voice data.
AI Summary available — skim the key points instantly. Show AI Generated Summary
Show AI Generated Summary
  • Almeida, J. S., Rebouças Filho, P. P., Carneiro, T., Wei, W., Damaševičius, R., Maskeliūnas, R., & de Albuquerque, V. H. C. (2019). Detecting Parkinson’s Disease with sustained phonation and speech signals using machine learning techniques. Pattern Recognition Letters, 125, 55–62. https://doi.org/10.1016/j.patrec.2019.04.005

    Article  Google Scholar 

  • Bot, B. M., Suver, C., Neto, E. C., Kellen, M., Klein, A., Bare, C., Doerr, M., Pratap, A., Wilbanks, J., Dorsey, E. R., Friend, S. H., & Trister, A. D. (2016). The mPower study, Parkinson Disease mobile data collected using ResearchKit. Scientific Data, 3(1), https://doi.org/10.1038/sdata.2016.11

  • Carrón, J., Campos-Roca, Y., Madruga, M., & Pérez, C. J. (2021). A mobile-assisted voice condition analysis system for Parkinson’s Disease: Assessment of usability conditions. Biomedical Engineering Online, 20(1), https://doi.org/10.1186/s12938-021-00951-y

  • Deng, K., Li, Y., Zhang, H., Wang, J., Albin, R. L., & Guan, Y. (2022). Heterogeneous digital biomarker integration out-performs patient self-reports in predicting Parkinson’s Disease. Communications Biology, 5(1), https://doi.org/10.1038/s42003-022-03002-x

  • Dinesh, A., & He, J. (2017). Using machine learning to diagnose Parkinson’s disease from voice recordings. 2017 IEEE MIT Undergraduate Research Technology Conference (URTC).

  • Hireš, M., Gazda, M., Drotár, P., Pah, N. D., Motin, M. A., & Kumar, D. K. (2022). Convolutional neural network ensemble for Parkinson’s Disease detection from voice recordings. Computers in Biology and Medicine, 141(105021), 105021. https://doi.org/10.1016/j.compbiomed.2021.105021

    Article  Google Scholar 

  • Karabayir, I., Goldman, S. M., Pappu, S., & Akbilgic, O. (2020). Gradient boosting for Parkinson’s Disease diagnosis from voice recordings. BMC Medical Informatics and Decision Making, 20(1), https://doi.org/10.1186/s12911-020-01250-7

  • Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A. E., & Moroz, I. M. (2007). Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. Biomedical Engineering Online, 6(1), 23. https://doi.org/10.1186/1475-925x-6-23

    Article  Google Scholar 

  • Orozco-Arroyave, J. R., Arias-Londoño, J. D., Vargas-Bonilla, J. F., González-Rátiva, M. C., & Nöth, E. (2014). New Spanish speech corpus database for the analysis of people suffering from Parkinson ‘s disease. In Proceedings of the ninth international conference on language resources and evaluation (LREC’14) (pp. 342–347). ELRA.

  • Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1), https://doi.org/10.1186/s13643-016-0384-4

  • Pützer, M., & Barry, W. J. (2007). Saarbruecken voice database [Data set]. https://www.stimmdatenbank.coli.uni-saarland.de/

  • Sujatha, J., & Rajagopalan, S. P. (2017). Performance evaluation of machine learning algorithms in the classification of Parkinson disease using voice attributes. International Journal of Applied Engineering Research, 12(21), 10669–10675.

    Google Scholar 

  • Valstar, M., Schuller, B., Smith, K., Eyben, F., Jiang, B., Bilakhia, S., Schnieder, S., Cowie, R., & Pantic, M. (2013). AVEC 2013: The continuous audio/visual emotion and depression recognition challenge. In Proceedings of the 3rd ACM international workshop on audio/visual emotion challenge.

  • Venegas, D. A. R. (2018). Dataset of vowels [Data set]. https://www.kaggle.com/datasets/darubiano57/dataset-of-vowels

  • Wroge, T. J., Ozkanca, Y., Demiroglu, C., Si, D., Atkins, D. C., & Ghomi, R. H. (2018). Parkinson’s disease diagnosis using machine learning and voice. In 2018 IEEE signal processing in medicine and biology symposium (SPMB).

  • Was this article displayed correctly? Not happy with what you see?

    Tabs Reminder: Tabs piling up in your browser? Set a reminder for them, close them and get notified at the right time.

    Try our Chrome extension today!


    Share this article with your
    friends and colleagues.
    Earn points from views and
    referrals who sign up.
    Learn more

    Facebook

    Save articles to reading lists
    and access them on any device


    Share this article with your
    friends and colleagues.
    Earn points from views and
    referrals who sign up.
    Learn more

    Facebook

    Save articles to reading lists
    and access them on any device