Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 | Nature


We located an Open Access version of this article, legally shared by the author or publisher. Open It
  • Gillon, M. et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  • de Wit, J. et al. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature 537, 69–72 (2016)

    Article  ADS  CAS  Google Scholar 

  • Barstow, J. K. & Irwin, P. G. J. Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? Mon. Not. R. Astron. Soc. 461, L92–L96 (2016)

    Article  ADS  CAS  Google Scholar 

  • Cresswell, P. & Nelson, R. P. On the evolution of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 450, 833–853 (2006)

    Article  ADS  Google Scholar 

  • Mills, S. M. et al. A resonant chain of four transiting, sub-Neptune planets. Nature 533, 509–512 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013)

    Article  ADS  Google Scholar 

  • Leconte, J. et al. 3D climate modelling of close-in land planets: circulation patterns, climate moist instability, and habitability. Astron. Astrophys. 554, A69 (2013)

    Article  Google Scholar 

  • Stevenson, D. J. Life-sustaining planets in interstellar space? Nature 400, 32 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gillon, M. et al. The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b. Astron. Astrophys. 542, A4 (2012)

    Article  ADS  Google Scholar 

  • Agol, E., Steffen, J., Sari, R. & Clarkson, W. On detecting terrestrial planets with timing of giant planet transits. Mon. Not. R. Astron. Soc. 359, 567–579 (2005)

    Article  ADS  Google Scholar 

  • Holman, M. J. & Murray, N. W. The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fabrycky, D. C. in Exoplanets (ed. Seager, S. ) 217–238 (Univ. Arizona Press, 2010)

  • Winn, J. N. in Exoplanets (ed. Seager, S. ) 55–77 (Univ. Arizona Press, 2010)

  • Zeng, L., Sasselov, D. D. & Jacobsen, S. B. Mass-radius relation for rocky planets based on PREM. Astrophys. J. 819, 127 (2016)

    Article  ADS  Google Scholar 

  • Chiang, E. & Laughlin, G. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Mon. Not. R. Astron. Soc. 431, 3444–3455 (2013)

    Article  ADS  Google Scholar 

  • Kane, S. R., Hinkel, N. R. & Raymond, S. N. Solar system moons as analogs for compact exoplanetary systems. Astron. J. 146, 122 (2013)

    Article  ADS  Google Scholar 

  • MacDonald, M. G. et al. A dynamical analysis of the Kepler-80 system of five transiting planets. Astron. J. 152, 105 (2016)

    Article  ADS  Google Scholar 

  • Papaloizou, J. C. B. & Szuszkiewicz, E. On the migration-induced resonances in a system of two planets with masses in the Earth mass range. Mon. Not. R. Astron. Soc. 363, 153–176 (2005)

    Article  ADS  Google Scholar 

  • Terquem, C. & Papaloizou, J. C. B. Migration and the formation of systems of hot super-Earths and Neptunes. Astrophys. J. 654, 1110–1120 (2007)

    Article  ADS  Google Scholar 

  • Goldreich, P. & Tremaine, S. Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Raymond, S. N., Barnes, R. & Mandell, A. M. Observable consequences of planet formation models in systems with close-in terrestrial planets. Mon. Not. R. Astron. Soc. 384, 663–674 (2008)

    Article  ADS  Google Scholar 

  • Alibert, Y. & Benz, W. Formation and composition of planets around very low mass stars. Astron. Astrophys. 598, L5 (2017)

  • Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main-sequence stars. Icarus 101, 108–128 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ribas, I. et al. The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present. Astron. Astrophys. 596, A111 (2016)

    Article  Google Scholar 

  • Wordsworth, R. D. et al. Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling. Astron. Astrophys. 522, A22 (2010)

    Article  Google Scholar 

  • Turbet, M. et al. The habitability of Proxima Centauri b II. Possible climates and observability. Astron. Astrophys. 596, A112 (2016)

    Article  Google Scholar 

  • Kopparapu, R. K. et al. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophys. J. 819, 84 (2016)

    Article  ADS  Google Scholar 

  • Bolmont, E. et al. Water loss from Earth-sized planets in the habitable zones of ultracool dwarfs: implications for the planets of TRAPPIST-1. Mon. Not. R. Astron. Soc. 464, 3728–3741 (2017)

    Article  ADS  CAS  Google Scholar 

  • Barnes, R. et al. Tidal limits to planetary habitability. Astrophys. J. 700, L30–L33 (2009)

    Article  ADS  CAS  Google Scholar 

  • Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zone of M dwarfs. Astrobiol. 15, 119–143 (2015)

    Article  ADS  CAS  Google Scholar 

  • Gillon, M. et al. TRAPPIST: a robotic telescope dedicated to the study of planetary systems. EPJ Web Conf. 11, 06002 (2011)

    Article  Google Scholar 

  • Jehin, E. et al. TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope. Messenger 145, 2–6 (2011)

    ADS  Google Scholar 

  • http://www.orca.ulg.ac.be/TRAPPIST/Trappist_main/Home.html

  • Pirard, J.-F. et al. HAWK-I: a new wide-field 1- to 2.5 μm imager for the VLT. Proc. SPIE 5492, 1763–1772 (2004)

    Article  ADS  Google Scholar 

  • Casali, M. et al. The UKIRT IR Wide-Field Camera (WFCAM). In The New Era of Wide-Field Astronomy (eds Clowes, R., Adamson, A. & Bromage, G. ) 357–363 (ASPC Conf. Series Vol. 232, 2001)

    Google Scholar 

  • Benn, C., Dee, K. & Agócs, T. ACAM: a new imager/spectrograph for the William Herschel Telescope. Proc. SPIE 7014, 70146X (2008)

    Article  ADS  Google Scholar 

  • http://telescope.livjm.ac.uk/TelInst/Inst/IOO/

  • http://shoc.saao.ac.za/Documents/ShocnHelpful.pdf

  • Stetson, P. B. DAOPHOT—a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pacif. 99, 191–222 (1987)

    Article  ADS  Google Scholar 

  • Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004)

    Article  ADS  Google Scholar 

  • Ingalls, J. G. et al. Intra-pixel gain variations and high-precision photometry with the Infrared Array Camera (IRAC). Proc. SPIE 8442, http://dx.doi.org/10.1117/12.926947 (2012)

  • Knutson, H. A. et al. The 3.6–8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008)

    Article  ADS  CAS  Google Scholar 

  • Gillon, M. et al. Search for a habitable terrestrial planet transiting the nearby red dwarf GJ 1214. Astron. Astrophys. 563, A21 (2014)

    Article  Google Scholar 

  • Eastman, J., Siverd, R. & Gaudi, B. S. Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. Publ. Astron. Soc. Pacif. 122, 935–946 (2010)

    Article  ADS  Google Scholar 

  • Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002)

    Article  ADS  Google Scholar 

  • Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  • Filippazzo, J. C. et al. Fundamental parameters and spectral energy distributions of young and field age objects with masses spanning the stellar to planetary regime. Astrophys. J. 810, 158 (2015)

    Article  ADS  Google Scholar 

  • Claret, A. A new non-linear limb-darkening law for LTE stellar atmosphere models. Calculations for −5.0 ≤ log[M/H] ≤ +1, 2000K ≤ Teff ≤ 50000K at several surface gravities. Astron. Astrophys. 363, 1081–1190 (2000)

    ADS  CAS  Google Scholar 

  • Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011)

    Article  ADS  Google Scholar 

  • Gelman, A. & Rubin., D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)

    Article  Google Scholar 

  • Deck, K. M. et al. TTVFast: an efficient and accurate code for transit timing inversion problems. Astrophys. J. 787, 132 (2014)

    Article  ADS  Google Scholar 

  • Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999)

    Article  ADS  Google Scholar 

  • Agol, E. & Deck, K. M. Transit timing to first order in eccentricity. Astrophys. J. 818, 177 (2016)

    Article  ADS  Google Scholar 

  • Deck, K. M. & Agol, E. Transit timing variations for planets near eccentricity-type mean motion resonances. Astrophys. J. 821, 96 (2016)

    Article  ADS  Google Scholar 

  • Levenberg, K. A method for certain problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  • Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  • Hanno, R. & Tamayo, D. WHFast: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015)

    Article  ADS  Google Scholar 

  • Pu, B. & Wu, Y. Spacing of Kepler planets: sculpting by dynamical instability. Astrophys. J. 807, 44 (2015); erratum 819, 170 (2016)

    Article  ADS  Google Scholar 

  • Bolmont, E. et al. Formation, tidal evolution, and habitability of the Kepler-186 system. Astrophys. J. 793, 3 (2014)

    Article  ADS  Google Scholar 

  • Bolmont, E. et al. Mercury-T: a new code to study tidally evolving multi-planet systems. Applications to Kepler-62. Astron. Astrophys. 583, A116 (2015)

    Article  Google Scholar 

  • Deck, K. M., Payne, M. & Holman, M. J. First-order resonance overlap and the stability of close two-planet systems. Astrophys. J. 774, 129 (2013)

    Article  ADS  Google Scholar 

  • 🧠 Pro Tip

    Skip the extension β€” just come straight here.

    We’ve built a fast, permanent tool you can bookmark and use anytime.

    Go To Paywall Unblock Tool
    Sign up for a free account and get the following:
  • Save articles and sync them across your devices
  • Get a digest of the latest premium articles in your inbox twice a week, personalized to you (Coming soon).
  • Get access to our AI features

  • Save articles to reading lists
    and access them on any device
    If you found this app useful,
    Please consider supporting us.
    Thank you!

    Save articles to reading lists
    and access them on any device
    If you found this app useful,
    Please consider supporting us.
    Thank you!