Sex differences in energy metabolism: natural selection, mechanisms and consequences | Nature Reviews Nephrology


This article explores the significant sex differences in energy metabolism, delving into the evolutionary underpinnings, biological mechanisms, and resulting health consequences.
AI Summary available β€” skim the key points instantly. Show AI Generated Summary
Show AI Generated Summary
  • Darwin, C. On the Origin of Species (John Murray, 1859).

  • Darwin, C. The Descent of Man, and Selection in Relation to Sex (John Murray, 1871).

  • Frisch, R. E. & McArthur, J. W. Menstrual cycles: fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science 185, 949–951 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Frisch, R. E. Body fat, menarche, fitness and fertility. Hum. Reprod. 2, 521–533 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1, 841–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Brüning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  PubMed  Google Scholar 

  • Burks, D. J. et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407, 377–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Chehab, F. F., Lim, M. E. & Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat. Genet. 12, 318–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ahima, R. S., Dushay, J., Flier, S. N., Prabakaran, D. & Flier, J. S. Leptin accelerates the onset of puberty in normal female mice. J. Clin. Invest. 99, 391–395 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paczoska-Eliasiewicz, H. E. et al. Exogenous leptin advances puberty in domestic hen. Domest. Anim. Endocrinol. 31, 211–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Paczoska-Eliasiewicz, H. E. et al. Attenuation by leptin of the effects of fasting on ovarian function in hens (Gallus domesticus). Reproduction 126, 739–751 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, M. L., Ong, K. K. & Dunger, D. B. Childhood obesity and the timing of puberty. Trends Endocrinol. Metab. 20, 237–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Hoyenga, K. B. & Hoyenga, K. T. Gender and energy balance: sex differences in adaptations for feast and famine. Physiol. Behav. 28, 545–563 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Widdowson, E. M. The response of the sexes to nutritional stress. Proc. Nutr. Soc. 35, 175–180 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Della Torre, S. & Maggi, A. Sex differences: a resultant of an evolutionary pressure? Cell Metab. 25, 499–505 (2017).

    Article  PubMed  Google Scholar 

  • Grayson, D. Differential mortality and the Donner Party disaster. Evol. Anthropol. 2, 151–159 (1993).

    Article  Google Scholar 

  • Dols, M. J. & Van Arcken, D. J. Food supply and nutrition in the Netherlands during and immediately after World War II. Milbank Mem. Fund. Q. 24, 319–358 (1946).

    Article  CAS  PubMed  Google Scholar 

  • Banning, C. Food shortage and public health, first half of 1945. Ann. Am. Acad. Pol. Soc. Sci. 245, 93–110 (1946).

    Article  Google Scholar 

  • Zarulli, V. et al. Women live longer than men even during severe famines and epidemics. Proc. Natl Acad. Sci. USA 115, E832–E840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, H., Strader, A. D., Woods, S. C. & Seeley, R. J. Sexually dimorphic responses to fat loss after caloric restriction or surgical lipectomy. Am. J. Physiol. Endocrinol. Metab. 293, E316–E326 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Valle, A. et al. Sex-related differences in energy balance in response to caloric restriction. Am. J. Physiol. Endocrinol. Metab. 289, E15–E22 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Halsey, L. G. et al. Variability in energy expenditure is much greater in males than females. J. Hum. Evol. 171, 103229 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter, S. L., Rennie, C. & Tarnopolsky, M. A. Substrate utilization during endurance exercise in men and women after endurance training. Am. J. Physiol. Endocrinol. Metab. 280, E898–E907 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Henderson, G. C. Sexual dimorphism in the effects of exercise on metabolism of lipids to support resting metabolism. Front. Endocrinol. 5, 162 (2014).

    Google Scholar 

  • Horton, T. J., Pagliassotti, M. J., Hobbs, K. & Hill, J. O. Fuel metabolism in men and women during and after long-duration exercise. J. Appl. Physiol. 85, 1823–1832 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky, M. A., Atkinson, S. A., Phillips, S. M. & MacDougall, J. D. Carbohydrate loading and metabolism during exercise in men and women. J. Appl. Physiol. 78, 1360–1368 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Braun, B. et al. Women at altitude: carbohydrate utilization during exercise at 4,300 m. J. Appl. Physiol. 88, 246–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen, K. Animal Physiology: Adaptation and Environment 5th edn (Cambridge Univ. Press, 1997).

  • Speechly, D. P., Taylor, S. R. & Rogers, G. G. Differences in ultra-endurance exercise in performance-matched male and female runners. Med. Sci. Sports Exerc. 28, 359–365 (1996).

    CAS  PubMed  Google Scholar 

  • Bam, J., Noakes, T. D., Juritz, J. & Dennis, S. C. Could women outrun men in ultramarathon races? Med. Sci. Sports Exerc. 29, 244–247 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Hamadeh, M. J., Devries, M. C. & Tarnopolsky, M. A. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J. Clin. Endocrinol. Metab. 90, 3592–3599 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Salehzadeh, F., Rune, A., Osler, M. & Al-Khalili, L. Testosterone or 17β-estradiol exposure reveals sex-specific effects on glucose and lipid metabolism in human myotubes. J. Endocrinol. 210, 219–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Maher, A. C., Akhtar, M. & Tarnopolsky, M. A. Men supplemented with 17β-estradiol have increased β-oxidation capacity in skeletal muscle. Physiol. Genomics 42, 342–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Ribas, V. et al. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl. Med. 8, 334ra354 (2016).

    Article  Google Scholar 

  • Donnelly, J. E. et al. Effects of a 16-month randomized controlled exercise trial on body weight and composition in young, overweight men and women: the Midwest Exercise Trial. Arch. Intern. Med. 163, 1343–1350 (2003).

    Article  PubMed  Google Scholar 

  • Pietrobelli, A. et al. Sexual dimorphism in the energy content of weight change. Int. J. Obes. Relat. Metab. Disord. 26, 1339–1348 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, S. et al. Energy expenditure, sex, and endogenous fuel availability in humans. J. Clin. Invest. 111, 981–988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson, G. C. et al. Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J. Physiol. 584, 963–981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uranga, A. P., Levine, J. & Jensen, M. Isotope tracer measures of meal fatty acid metabolism: reproducibility and effects of the menstrual cycle. Am. J. Physiol. Endocrinol. Metab. 288, E547–E555 (2005).

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan, A. J., Crampton, L. J., Freund, J. & Ho, K. K. The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women. J. Clin. Invest. 102, 1035–1040 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lwin, R. et al. Effect of oral estrogen on substrate utilization in postmenopausal women. Fertil. Steril. 90, 1275–1278 (2008).

    Article  PubMed  Google Scholar 

  • Marlatt, K. L. et al. Effect of conjugated estrogens and bazedoxifene on glucose, energy and lipid metabolism in obese postmenopausal women. Eur. J. Endocrinol. 183, 439–452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvais-Jarvis, F., Clegg, D. J. & Hevener, A. L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 34, 309–338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djouadi, F. et al. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor alpha-deficient mice. J. Clin. Invest. 102, 1083–1091 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson, S., Scheurink, A. J. & Ahren, B. Gender difference in the glucagon response to glucopenic stress in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R281–R288 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Chumlea, W. C. et al. Body composition estimates from NHANES III bioelectrical impedance data. Int. J. Obes. Relat. Metab. Disord. 26, 1596–1609 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, G. et al. Gender differences in newborn subcutaneous fat distribution. Eur. J. Pediatr. 163, 457–461 (2004).

    Article  PubMed  Google Scholar 

  • Koo, W. W., Walters, J. C. & Hockman, E. M. Body composition in human infants at birth and postnatally. J. Nutr. 130, 2188–2194 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky, M. A. Gender Differences in Metabolism 179–199 (CRC Press, 1999).

  • Vague, J. Sexual differentiation; factor determining forms of obesity [French]. Presse Med. 55, 339 (1947).

    CAS  Google Scholar 

  • Bouchard, C., Despres, J. P. & Mauriege, P. Genetic and nongenetic determinants of regional fat distribution. Endocr. Rev. 14, 72–93 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Bjorntorp, P. Abdominal fat distribution and disease: an overview of epidemiological data. Ann. Med. 24, 15–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Goossens, G. H., Jocken, J. W. E. & Blaak, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 17, 47–66 (2021).

    Article  PubMed  Google Scholar 

  • Gavin, K. M. & Bessesen, D. H. Sex differences in adipose tissue function. Endocrinol. Metab. Clin. North. Am. 49, 215–228 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Karastergiou, K., Smith, S. R., Greenberg, A. S. & Fried, S. K. Sex differences in human adipose tissues – the biology of pear shape. Biol. Sex. Differ. 3, 13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer, B. F. & Clegg, D. J. The sexual dimorphism of obesity. Mol. Cell. Endocrinol. 402, 113–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Schorr, M. et al. Sex differences in body composition and association with cardiometabolic risk. Biol. Sex. Differ. 9, 28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tchoukalova, Y. D. et al. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc. Natl Acad. Sci. USA 107, 18226–18231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Z., Johnson, C. M. & Jensen, M. D. Regional lipolytic responses to isoproterenol in women. Am. J. Physiol. 273, E108–E112 (1997).

    CAS  PubMed  Google Scholar 

  • Rebuffé-Scrive, M. et al. Fat cell metabolism in different regions in women. Effect of menstrual cycle, pregnancy, and lactation. J. Clin. Invest. 75, 1973–1976 (1985).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, T. T., Hernández Mijares, A., Johnson, C. M. & Jensen, M. D. Postprandial leg and splanchnic fatty acid metabolism in nonobese men and women. Am. J. Physiol. 271, E965–E972 (1996).

    CAS  PubMed  Google Scholar 

  • Moverare-Skrtic, S. et al. Dihydrotestosterone treatment results in obesity and altered lipid metabolism in orchidectomized mice. Obesity 14, 662–672 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein, J. S. et al. Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 369, 1011–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa, H. et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 51, 2734–2741 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco, F., Zitzmann, M., Simoni, M. & Nieschlag, E. Serum adiponectin levels in hypogonadal males: influence of testosterone replacement therapy. Clin. Endocrinol. 60, 500–507 (2004).

    Article  CAS  Google Scholar 

  • Fan, W. et al. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes 54, 1000–1008 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Graham, T. E. Thermal, metabolic, and cardiovascular changes in men and women during cold stress. Med. Sci. Sports Exerc. 20, S185–S192 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Quevedo, S., Roca, P., Picó, C. & Palou, A. Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflug. Arch. 436, 689–695 (1998).

    Article  CAS  Google Scholar 

  • Rodriguez-Cuenca, S. et al. Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J. Biol. Chem. 277, 42958–42963 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Gómez-García, I., Trepiana, J., Fernández-Quintela, A., Giralt, M. & Portillo, M. P. Sexual dimorphism in brown adipose tissue activation and white adipose tissue browning. Int. J. Mol. Sci. 23, 8250 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herz, C. T. et al. Sex differences in brown adipose tissue activity and cold-induced thermogenesis. Mol. Cell. Endocrinol. 534, 111365 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Nookaew, I. et al. Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. J. Clin. Endocrinol. Metab. 98, E370–E378 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Fuller-Jackson, J. P., Dordevic, A. L., Clarke, I. J. & Henry, B. A. Effect of sex and sex steroids on brown adipose tissue heat production in humans. Eur. J. Endocrinol. 183, 343–355 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Whitfield, J. Everything you always wanted to know about sexes. PLoS Biol. 2, e183 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Birky, C. W. Jr. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc. Natl Acad. Sci. USA 92, 11331–11338 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura-Clapier, R. et al. Mitochondria: a central target for sex differences in pathologies. Clin. Sci. 131, 803–822 (2017).

    Article  CAS  Google Scholar 

  • Pinto, R. E. & Bartley, W. The nature of the sex-linked differences in glutathione peroxidase activity and aerobic oxidation of glutathione in male and female rat liver. Biochem. J. 115, 449–456 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrás, C. et al. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free. Radic. Biol. Med. 34, 546–552 (2003).

    Article  PubMed  Google Scholar 

  • Orr, W. C. & Sohal, R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, A., Azuma, K., Ikeda, K. & Inoue, S. Mechanisms underlying the regulation of mitochondrial respiratory chain complexes by nuclear steroid receptors. Int. J. Mol. Sci. 21, 6683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinge, C. M. Estrogenic control of mitochondrial function. Redox Biol. 31, 101435 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beikoghli Kalkhoran, S. & Kararigas, G. Oestrogenic regulation of mitochondrial dynamics. Int. J. Mol. Sci. 23, 1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norheim, F. et al. Gene-by-sex interactions in mitochondrial functions and cardio-metabolic traits. Cell Metab. 29, 932–949.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan, K. C. et al. Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nat. Metab. 3, 1552–1568 (2021).

    Article  PubMed Central  Google Scholar 

  • Gannon, M., Kulkarni, R. N., Tse, H. M. & Mauvais-Jarvis, F. Sex differences underlying pancreatic islet biology and its dysfunction. Mol. Metab. 15, 82–91 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro, G., Allard, C., Xu, W. & Mauvais-Jarvis, F. The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity 23, 713–719 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Mauvais-Jarvis, F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol. Metab. 27, 844–855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex. Differ. 6, 14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Frias, J. P. et al. Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes 50, 1344–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nuutila, P. et al. Gender and insulin sensitivity in the heart and in skeletal muscles. Studies using positron emission tomography. Diabetes 44, 31–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Fonseca, V. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am. J. Med. 115, 42s–48s (2003).

    Article  CAS  PubMed  Google Scholar 

  • Basu, R. et al. Effects of age and sex on postprandial glucose metabolism: differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction. Diabetes 55, 2001–2014 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hevener, A. L., Ribas, V., Moore, T. M. & Zhou, Z. ERα in the control of mitochondrial function and metabolic health. Trends Mol. Med. 27, 31–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Allard, C. et al. Loss of nuclear and membrane estrogen receptor-α differentially impairs insulin secretion and action in male and female mice. Diabetes 68, 490–501 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Mauvais-Jarvis, F., Manson, J. E., Stevenson, J. C. & Fonseca, V. A. Menopausal hormone therapy and type 2 diabetes prevention: evidence, mechanisms and clinical implications. Endocr. Rev. 38, 173–188 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro, G. et al. Androgen excess in pancreatic β cells and neurons predisposes female mice to type 2 diabetes. JCI Insight 3, e98607 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrisse, S. et al. Androgen-induced insulin resistance is ameliorated by deletion of hepatic androgen receptor in females. FASEB J. 35, e21921 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Haider, N. et al. Signaling defects associated with insulin resistance in nondiabetic and diabetic individuals and modification by sex. J. Clin. Invest. 131, e151818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, W., Morford, J. & Mauvais-Jarvis, F. Emerging role of testosterone in pancreatic β-cell function and insulin secretion. J. Endocrinol. 240, R97–R105 (2019).

    Article  CAS  Google Scholar 

  • Tiano, J. P. & Mauvais-Jarvis, F. Importance of oestrogen receptors to preserve functional β-cell mass in diabetes. Nat. Rev. Endocrinol. 8, 342–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Merimee, T. J. & Tyson, J. E. Stabilization of plasma glucose during fasting; normal variations in two separate studies. N. Engl. J. Med. 291, 1275–1278 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Heras, V. et al. Central ceramide signaling mediates obesity-induced precocious puberty. Cell Metab. 32, 951–966.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Kelly, T., Yang, W., Chen, C. S., Reynolds, K. & He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 32, 1431–1437 (2008).

    Article  CAS  Google Scholar 

  • Ford, E. S., Giles, W. H. & Mokdad, A. H. Increasing prevalence of the metabolic syndrome among U.S. adults. Diabetes Care 27, 2444–2449 (2004).

    Article  PubMed  Google Scholar 

  • Al-Lawati, J. A., Mohammed, A. J., Al-Hinai, H. Q. & Jousilahti, P. Prevalence of the metabolic syndrome among Omani adults. Diabetes Care 26, 1781–1785 (2003).

    Article  PubMed  Google Scholar 

  • Gu, D. et al. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 365, 1398–1405 (2005).

    Article  PubMed  Google Scholar 

  • Gupta, R. et al. Prevalence of metabolic syndrome in an Indian urban population. Int. J. Cardiol. 97, 257–261 (2004).

    Article  PubMed  Google Scholar 

  • O’Sullivan, A. J., Hoffman, D. M. & Ho, K. K. Estrogen, lipid oxidation, and body fat. N. Engl. J. Med. 333, 669–670 (1995).

    Article  PubMed  Google Scholar 

  • Walsh, B. W. et al. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N. Engl. J. Med. 325, 1196–1204 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Chella Krishnan, K. et al. Liver pyruvate kinase promotes NAFLD/NASH in both mice and humans in a sex-specific manner. Cell Mol. Gastroenterol. Hepatol. 11, 389–406 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, K. D. & Jaffrey, S. R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15, 313–326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Salisbury, D. A. et al. Transcriptional regulation of N6-methyladenosine orchestrates sex-dimorphic metabolic traits. Nat. Metab. 3, 940–953 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikkanen, J. et al. An evolutionary trade-off between host immunity and metabolism drives fatty liver in male mice. Science 378, 290–295 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, J., Stubbins, R. E., Smith, R. R., Harvey, A. E. & Núñez, N. P. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr. J. 8, 11 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Karp, C. L. Unstressing intemperate models: how cold stress undermines mouse modeling. J. Exp. Med. 209, 1069–1074 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maloney, S. K., Fuller, A., Mitchell, D., Gordon, C. & Overton, J. M. Translating animal model research: does it matter that our rodents are cold. Physiology 29, 413–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Stemmer, K. et al. Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int. J. Obes. 39, 791–797 (2015).

    Article  CAS  Google Scholar 

  • Bowers, S. L., Bilbo, S. D., Dhabhar, F. S. & Nelson, R. J. Stressor-specific alterations in corticosterone and immune responses in mice. Brain Behav. Immun. 22, 105–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Giles, D. A. et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat. Med. 23, 829–838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeley, R. J. & MacDougald, O. A. Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nat. Metab. 3, 443–445 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Glumer, C., Jorgensen, T. & Borch-Johnsen, K. Prevalences of diabetes and impaired glucose regulation in a Danish population: the Inter99 study. Diabetes Care 26, 2335–2340 (2003).

    Article  PubMed  Google Scholar 

  • Sicree, R. A. et al. Differences in height explain gender differences in the response to the oral glucose tolerance test – the AusDiab study. Diabet. Med. 25, 296–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  • van Genugten, R. E. et al. Effects of sex and hormone replacement therapy use on the prevalence of isolated impaired fasting glucose and isolated impaired glucose tolerance in subjects with a family history of type 2 diabetes. Diabetes 55, 3529–3535 (2006).

    Article  PubMed  Google Scholar 

  • Williams, J. W. et al. Gender differences in the prevalence of impaired fasting glycaemia and impaired glucose tolerance in Mauritius. Does sex matter? Diabet. Med. 20, 915–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).

    Article  PubMed  Google Scholar 

  • Mauvais-Jarvis, F. et al. Ketosis-prone type 2 diabetes in patients of sub-Saharan African origin: clinical pathophysiology and natural history of β-cell dysfunction and insulin resistance. Diabetes 53, 645–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Umpierrez, G. E., Smiley, D. & Kitabchi, A. E. Narrative review: ketosis-prone type 2 diabetes mellitus. Ann. Intern. Med. 144, 350–357 (2006).

    Article  PubMed  Google Scholar 

  • Louet, J. F. et al. Gender and neurogenin3 influence the pathogenesis of ketosis-prone diabetes. Diabetes, Obes. Metab. 10, 912–920 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Perreault, L. et al. Sex differences in diabetes risk and the effect of intensive lifestyle modification in the Diabetes Prevention Program. Diabetes Care 31, 1416–1421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wannamethee, S. G. et al. Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women’s Heart Health Study. Diabetologia 55, 80–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Peters, S. A., Huxley, R. R., Sattar, N. & Woodward, M. Sex differences in the excess risk of cardiovascular diseases associated with type 2 diabetes: potential explanations and clinical implications. Curr. Cardiovasc. Risk Rep. 9, 36 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, T. et al. Sex differences in cardiovascular risk profile from childhood to midlife between individuals who did and did not develop diabetes at follow-up: the Bogalusa Heart Study. Diabetes Care 42, 635–643 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida, Y. et al. Sex differences in the progression of metabolic risk factors in diabetes development. JAMA Netw. Open. 5, e2222070 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauvais-Jarvis, F. Sex differences in the pathogenesis of type 2 diabetes may explain the stronger impact of diabetes on atherosclerotic heart disease in women. J. Diabetes Complications 33, 460–461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Fox, C. S. et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 8, e1002695 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung, Y. J. et al. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. Int. J. Obes. 40, 662–674 (2016).

    Article  CAS  Google Scholar 

  • Rifas, L. & Weitzmann, M. N. A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner. Arthritis Rheum. 60, 3324–3335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilpelainen, T. O. et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat. Genet. 43, 753–760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nat. Genet. 53, 1283–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Waraich, R. S. & Mauvais-Jarvis, F. Paracrine and intracrine contributions of androgens and estrogens to adipose tissue biology: physiopathological aspects. Horm. Mol. Biol. Clin. Invest. 14, 49–55 (2013).

    CAS  Google Scholar 

  • Xu, W. et al. Intracrine testosterone activation in human pancreatic β-cells stimulates insulin secretion. Diabetes 69, 2392–2399 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, L. et al. Incidence of type 2 diabetes mellitus in men receiving steroid 5α-reductase inhibitors: population based cohort study. BMJ 365, l1204 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Boszkiewicz, K., Piwowar, A. & Petryszyn, P. Aromatase inhibitors and risk of metabolic and cardiovascular adverse effects in breast cancer patients – a systematic review and meta-analysis. J. Clin. Med. 11, 3133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deslypere, J. P., Verdonck, L. & Vermeulen, A. Fat tissue: a steroid reservoir and site of steroid metabolism. J. Clin. Endocrinol. Metab. 61, 564–570 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Borg, W., Shackleton, C. H., Pahuja, S. L. & Hochberg, R. B. Long-lived testosterone esters in the rat. Proc. Natl Acad. Sci. USA 92, 1545–1549 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvais-Jarvis, F. Estrogen sulfotransferase: intracrinology meets metabolic diseases. Diabetes 61, 1353–1354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J. et al. Sex-specific effect of estrogen sulfotransferase on mouse models of type 2 diabetes. Diabetes 61, 1543–1551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laudet, V. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J. Mol. Endocrinol. 19, 207–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Thornton, J. W., Need, E. & Crews, D. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301, 1714–1717 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Eick, G. N. & Thornton, J. W. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol. Cell Endocrinol. 334, 31–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science 312, 97–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Carroll, S. M., Bridgham, J. T. & Thornton, J. W. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors. Mol. Biol. Evol. 25, 2643–2652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markov, G. V. et al. Independent elaboration of steroid hormone signaling pathways in metazoans. Proc. Natl Acad. Sci. USA 106, 11913–11918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbier, P., Edwards, D. A. & Roffi, J. The neonatal testosterone surge: a comparative study. Arch. Int. Physiol. Biochim. Biophys. 100, 127–131 (1992).

    CAS  PubMed  Google Scholar 

  • Siiteri, P. K. & Wilson, J. D. Testosterone formation and metabolism during male sexual differentiation in the human embryo. J. Clin. Endocrinol. Metab. 38, 113–125 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Arnold, A. P. & Gorski, R. A. Gonadal steroid induction of structural sex differences in the central nervous system. Annu. Rev. Neurosci. 7, 413–442 (1984).

    Article  CAS  PubMed  Google Scholar 

  • MacLusky, N. J. & Naftolin, F. Sexual differentiation of the central nervous system. Science 211, 1294–1302 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Simerly, R. B. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu. Rev. Neurosci. 25, 507–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Morris, J. A., Jordan, C. L. & Breedlove, S. M. Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7, 1034–1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Negri-Cesi, P. et al. Sexual differentiation of the rodent hypothalamus: hormonal and environmental influences. J. Steroid Biochem. Mol. Biol. 109, 294–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Wu, M. V. et al. Estrogen masculinizes neural pathways and sex-specific behaviors. Cell 139, 61–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvais-Jarvis, F. Developmental androgenization programs metabolic dysfunction in adult mice: clinical implications. Adipocyte 3, 151–154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nohara, K. et al. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. Am. J. Physiol. Endocrinol. Metab. 304, E1321–E1330 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nohara, K. et al. Early-life exposure to testosterone programs the hypothalamic melanocortin system. Endocrinology 152, 1661–1669 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexanderson, C. et al. Postnatal testosterone exposure results in insulin resistance, enlarged mesenteric adipocytes, and an atherogenic lipid profile in adult female rats: comparisons with estradiol and dihydrotestosterone. Endocrinology 148, 5369–5376 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Barnes, R. B. et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J. Clin. Endocrinol. Metab. 79, 1328–1333 (1994).

    CAS  PubMed  Google Scholar 

  • Eisner, J. R., Dumesic, D. A., Kemnitz, J. W., Colman, R. J. & Abbott, D. H. Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. Obes. Res. 11, 279–286 (2003).

    Article  PubMed  Google Scholar 

  • Hague, W. M. et al. The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives. Clin. Endocrinol. 33, 501–510 (1990).

    Article  CAS  Google Scholar 

  • Nilsson, C., Niklasson, M., Eriksson, E., Bjorntorp, P. & Holmang, A. Imprinting of female offspring with testosterone results in insulin resistance and changes in body fat distribution at adult age in rats. J. Clin. Invest. 101, 74–78 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reizel, Y. et al. Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes. Dev. 29, 923–933 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon, O. et al. Meta-analysis of epigenome-wide association studies in newborns and children show widespread sex differences in blood DNA methylation. Mutat. Res. Rev. Mutat. Res. 789, 108415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgoyne, P. S. A Y-chromosomal effect on blastocyst cell number in mice. Development 117, 341–345 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Ray, P. F., Conaghan, J., Winston, R. M. & Handyside, A. H. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. J. Reprod. Fertil. 104, 165–171 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Zore, T., Palafox, M. & Reue, K. Sex differences in obesity, lipid metabolism, and inflammation–a role for the sex chromosomes? Mol. Metab. 15, 35–44 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvais-Jarvis, F., Arnold, A. P. & Reue, K. A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab. 25, 1216–1230 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X. et al. The number of X chromosomes causes sex differences in adiposity in mice. PLoS Genet. 8, e1002709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link, J. C. et al. X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. J. Clin. Invest. 130, 5688–5702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., McClusky, R., Itoh, Y., Reue, K. & Arnold, A. P. X and Y chromosome complement influence adiposity and metabolism in mice. Endocrinology 154, 1092–1104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold, A. P. & Lusis, A. J. Understanding the sexome: measuring and reporting sex differences in gene systems. Endocrinology 153, 2551–2555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly, L. A., Doney, A. S., Hattersley, A. T., Morris, A. D. & Pearson, E. R. The effect of obesity on glycaemic response to metformin or sulphonylureas in type 2 diabetes. Diabet. Med. 23, 128–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. M. et al. Predictive clinical parameters for therapeutic efficacy of rosiglitazone in Korean type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 67, 43–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wilding, J. P., Overgaard, R. V., Jacobsen, L. V., Jensen, C. B. & le Roux, C. W. Exposure-response analyses of liraglutide 3.0 mg for weight management. Diabetes Obes. Metab. 18, 491–499 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvais-Jarvis, F. et al. Sex- and gender-based pharmacological response to drugs. Pharmacol. Rev. 73, 730–762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Was this article displayed correctly? Not happy with what you see?

    Tabs Reminder: Tabs piling up in your browser? Set a reminder for them, close them and get notified at the right time.

    Try our Chrome extension today!


    Share this article with your
    friends and colleagues.
    Earn points from views and
    referrals who sign up.
    Learn more

    Facebook

    Save articles to reading lists
    and access them on any device


    Share this article with your
    friends and colleagues.
    Earn points from views and
    referrals who sign up.
    Learn more

    Facebook

    Save articles to reading lists
    and access them on any device