To solve the given problem, we need to find the modulus and principal value of the argument for the complex number expression \(\frac{(1+i\sqrt{3})^{16}}{(\sqrt{3}-i)^{17}}\). We will first simplify the expression using polar form and then find the modulus and argument. #### Solution By Steps ***Step 1: Convert to Polar Form*** First, convert each complex number to its polar form. - For \(1+i\sqrt{3}\), the modulus \(r_1 = \sqrt{1^2 + (\sqrt{3})^2} = 2\), and the argument \(\theta_1 = \arctan\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}\). - For \(\sqrt{3}-i\), the modulus \(r_2 = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2\), and the argument \(\theta_2 = \arctan\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}\). ***Step 2: Calculate Powers*** Calculate the powers using the polar form: - \((1+i\sqrt{3})^{16} = 2^{16} \operatorname{cis}(16\cdot\frac{\pi}{3})\) - \((\sqrt{3}-i)^{17} = 2^{17} \operatorname{cis}(17\cdot-\frac{\pi}{6})\) ***Step 3: Divide and Simplify*** Divide the two expressions: \[\frac{(1+i\sqrt{3})^{16}}{(\sqrt{3}-i)^{17}} = \frac{2^{16} \operatorname{cis}(16\cdot\frac{\pi}{3})}{2^{17} \operatorname{cis}(17\cdot-\frac{\pi}{6})}\] Simplify by dividing the moduli and subtracting the arguments: \[= \frac{2^{16}}{2^{17}} \operatorname{cis}\left(16\cdot\frac{\pi}{3} - 17\cdot-\frac{\pi}{6}\right)\] \[= \frac{1}{2} \operatorname{cis}\left(\frac{16\pi}{3} + \frac{17\pi}{6}\right)\] ***Step 4: Find Modulus and Argument*** - Modulus: \(r = \frac{1}{2}\) - Argument: \(\theta = \frac{16\pi}{3} + \frac{17\pi}{6} = \frac{49\pi}{6}\) Since the argument is greater than \(2\pi\), subtract \(2\pi\) to find the principal value: \[\theta = \frac{49\pi}{6} - 2\pi = \frac{49\pi}{6} - \frac{12\pi}{6} = \frac{37\pi}{6}\] Subtract another \(2\pi\) to get the principal value: \[\theta = \frac{37\pi}{6} - \frac{12\pi}{6} = \frac{25\pi}{6}\] Subtract \(2\pi\) again: \[\theta = \frac{25\pi}{6} - \frac{12\pi}{6} = \frac{13\pi}{6}\] Subtract \(2\pi\) one more time: \[\theta = \frac{13\pi}{6} - \frac{12\pi}{6} = \frac{\pi}{6}\] #### Final Answer The modulus is \(\frac{1}{2}\) and the principal value of the argument is \(\frac{\pi}{6}\).
See Full Answer
If you often open multiple tabs and struggle to keep track of them, Tabs Reminder is the solution you need. Tabs Reminder lets you set reminders for tabs so you can close them and get notified about them later. Never lose track of important tabs again with Tabs Reminder!
Try our Chrome extension today!
Share this article with your
friends and colleagues.
Earn points from views and
referrals who sign up.
Learn more